Non-Commutative Sylvester's Determinantal Identity
نویسنده
چکیده
Sylvester’s identity is a classical determinantal identity with a straightforward linear algebra proof. We present combinatorial proofs of several non-commutative extensions, and find a β-extension that is both a generalization of Sylvester’s identity and the β-extension of the quantum MacMahon master theorem.
منابع مشابه
Non-commutative Sylvester’s determinantal identity, preprint
Sylvester's identity is a classical determinantal identity with a straightforward linear algebra proof. We present a new, combinatorial proof of the identity, prove several non-commutative versions, and find a β-extension that is both a generalization of Sylvester's identity and the β-extension of the MacMahon master theorem.
متن کاملNon-commutative extensions of classical determinantal identities
We present several non-commutative extensions of MacMahon Master Theorem and Sylvester’s Identity. The proofs are combinatorial and new even in the classical (commutative) cases. Résumé. Nous présentons plusieurs extensions noncommutatives du Master théorème de MacMahon et de l’identité de Sylvester. Même dans les cas classiques (commutatifs), les démonstrations sont nouvelles et de nature comb...
متن کاملA Generalized Sylvester Identity and Fraction-free Random Gaussian Elimination
Sylvester's identity is a well-known identity which can be used to prove that certain Gaussian elimination algorithms are fraction-free. In this paper we will generalize Sylvester's identity and use it to prove that certain random Gaussian elimination algorithms are fraction-free. This can be used to yield fraction-free algorithms for solving Ax = b (x 0) and for the simplex method in linear pr...
متن کاملA generalization of Sylvester's identity
We consider a new generalization of Euler's and Sylvester's identities for partitions. Our proof is based on an explicit bijection.
متن کاملThe sum-annihilating essential ideal graph of a commutative ring
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 14 شماره
صفحات -
تاریخ انتشار 2007